
Identifying, Assigning, and Quantifying Crosscutting Concerns

Marc Eaddy, Alfred Aho

Department of Computer Science

Columbia University

{eaddy,aho}@cs.columbia.edu

Gail C. Murphy

Department of Computer Science

University of British Columbia

murphy@cs.ubc.ca

Abstract

Crosscutting concerns degrade software quality.

Before we can modularize the crosscutting concerns in

our programs to increase software quality, we must

first be able to find them. Unfortunately, accurately

locating the code related to a concern is difficult, and

without proper metrics, determining how much the

concern is crosscutting is impossible. We propose a

systematic methodology for identifying which code is

related to which concern, and a suite of metrics for

quantifying the amount of crosscutting code. Our

concern identification and assignment guidelines

resolve some of the ambiguity issues encountered by

other researchers. We applied this approach to

systematically identify all the requirement concerns in

a 13,531 line program. We found that 95% of the

concerns were crosscutting—indicating a significant

potential for improving modularity—and that our

metrics were better able to determine which concerns

would benefit the most from reengineering.

1. Introduction and related work

The crosscutting concern problem [13] causes the

code related to a concern to be scattered across the

program, and often tangled with the code related to

other concerns. Several studies indicate that

modularizing crosscutting concerns improves software

quality [14, 16, 17, 21], providing indirect proof that

crosscutting hurts modularity. Unfortunately, there is

little guidance for finding crosscutting concerns, and

determining when it is profitable to modularize them.

Before we can go about reducing crosscutting code

to improve modularity, we must first determine what

the concerns of the program are (concern

identification) and where they manifest in the program

text (concern assignment). Only then can we classify

the concerns as crosscutting or noncrosscutting.

Alas, manually locating the source code related to a

concern is a notoriously hard problem even when the

concerns are well defined [2, 15, 18, 22].

Unfortunately, concerns are rarely well defined, partly

because the term ―concern‖ is so abstract [20], leading

to inconsistent interpretations [6, 15, 18]. Another

level of inconsistency is introduced when concerns are

assigned to code because existing guidelines [11, 18]

are ambiguous. These inconsistencies ensure that

experimental results are not repeatable and lead to

misguided assessments of the nature and extent of

crosscutting in the program.

Automated techniques apply their rules consistently,

but they might not find the concerns that the developer

is interested in. Execution trace-based techniques, for

instance, miss concerns that cannot be isolated by a

given test run [6, 7, 22]. These techniques miss

―nonfunctional‖ concerns, such as logging and error

handling. Aspect mining [4] and static analysis [19]

techniques are useful at generating suggestions for

possible concerns, but human interpretation is still

required.

We present a novel manual concern identification

and assignment methodology in Section 4 that we

argue is easier to interpret objectively, resulting in

fewer ambiguities than previous approaches [11]. We

focus on a manual approach because we would like the

concern assignment to cover the entire source base to

enable analysis of the full extent of crosscutting.

We also present a novel set of concern metrics in

Section 3 based on a formal model (defined in Section

2) for measuring the degree to which the code related

to a concern crosscuts the program (concern

quantification) and the degree to which concerns are

separated within a component. We argue that our

metrics provide a quantification not possible with

existing concern metrics and traditional OO metrics

[5]. We include a comparison of some of these metrics

in our case study in Section 5. Section 6 concludes.

2. Concern model

Abstractly, a program specification, or simply

specification, is a description of a program. A

specification may be physical, e.g., a set of program

components, or logical, e.g., a requirements

specification or design model. We define a concern

Figure 1. Relation between source and target
specifications.

source target

as an element from a program’s logical

specification. Thus, a logical specification represents

a concern domain of the program.

The program components that are meaningful

depend upon the language in which the program is

expressed. Common components for OO programs are

files, classes, fields, methods, statements, and

statement blocks (for-loops, if-then-else blocks, etc.).

A container component may contain other components,

e.g., a class can contain fields and methods, an if-

statement contains one or more statements. In contrast,

a primitive component does not contain any

components (e.g., non-block statements, declarations).

A component may reference another component, e.g., a

method call statement references the method called and

a statement that updates a field references that field.

We define our concern-component mapping as a

tuple M = (S, T, Cs, Ct, R). S and T are the source

specification and target specification, respectively,

whose elements can be concerns or components.

Concern and component domains may be hierarchical

[20], and this hierarchy is described by the Cs and Ct

containment relations, e.g., Cs

, s1 is a source element that contains s2.

Finally, R is a dependency relation between the two

specifications, . This is depicted

in Figure 1.

The concern model in [1] is similar, except ours is

formally stated using set theory, which facilitates

metric definition. Our model also supports hierarchical

specifications, making it more general and allowing

concern identification, assignment, and quantification

to be performed at multiple granularity levels.

For our metrics, we focus on the scenario where S is

a set of concerns organized into a hierarchy described

by Cs, and T is a set of components (container and

primitive) organized according to Ct. Thus our

challenge is to determine S and Cs (i.e., concern

identification), and R (i.e., concern assignment).

We can now define some common terminology. A

concern is scattered if it is related to multiple target

elements, and tangled if both it and at least one

other concern are related to the same target

element. These definitions agree with those in [8].

For the purposes of this paper, a crosscutting concern

is a concern that is scattered. [10, p. 4]

3. Concern metrics

We redefine the closeness metrics [22] in terms of

our model, and extend them to form the basis for our

concern metrics. Our metrics are independent of the

particular methodology used to identify and assign

concerns.

3.1. Degree of scattering (DOS)

Concentration (CONC) measures how many of the

source lines related to a concern s are contained within

a specific component t (e.g., a file, class, method) [22]:

Source lines of code (SLOCs) excludes comments,

blank lines, and annotations used for concern

assignment. The drawback of CONC is that it does not

give a sense for how scattered a concern is and does

not allow concerns to be compared. To resolve this,

we created the degree of scattering (DOS) metric (for

brevity we do not show its derivation):

where T is the set of components and |T| > 1. DOS is a

measure of the variance of the concentration of a

concern over all components with respect to the worst

case (i.e., when the concern is equally scattered across

all components). It has the following properties:

 DOS is normalized to be between 0 (completely

localized) and 1 (completely delocalized, uniformly

distributed) (inclusive) so that concerns can be

meaningfully compared.

 DOS is somewhat proportional to the number of

components related to the concern.

 DOS is somewhat inversely proportional to the

concentration. That is, the less concentrated the

concern is, the more scattered it is.

A defining characteristic of a module is that its

implementation is localized, so a concern that is

scattered is by definition not modular. Furthermore,

the components across which the implementation of

the concern is scattered are less modular than if the

scattered concern were not present. We conjecture that

the modularity of the program is inversely proportional

to the average degree of scattering (ADOS, obtained by

averaging DOS over all the concerns of the program).

3.2. Degree of focus (DOF)

Dedication (DEDI) measures how many of the

source lines contained within a component t are related

to concern s [22]:

Again, the drawback is that it is hard to get a sense

for how well concerns are separated in a component.

To resolve this, we created the degree of focus (DOF)

metric:

where S is the set of concerns and |S| > 1. DOF is a

measure of the variance of the dedication of a

component to every concern with respect to the worst

case (i.e., when the component is equally dedicated to

all concerns). It has the following properties:

 DOF is normalized between 0 (completely

unfocused) and 1 (completely focused) (inclusive)

so that components can be meaningfully compared.

 DOF is somewhat inversely proportional to the

number of concerns related to the component.

 DOF is somewhat proportional to the dedication.

That is, the more uniformly divided the

component’s code is among its concerns, the lower

its focus.

By averaging the degree of focus (ADOF), we

obtain an indication for how well concerns are

separated in the program. Ideally, a program should

have a low average degree of scattering (ADOS) and a

high average degree of focus (ADOF).

Metrics that measure crosscutting are dependent on

the concern and component granularity level. Thus,

DOS values are only comparable at the same

granularity level (similarly for DOF).

4. Concern identification and assignment

Before we can apply DOS to determine how

scattered a concern is, we must first identify all the

code related to that concern. Similarly, before we can

apply DOF to determine how focused a component is,

we must first identify the concerns related to all the

code in that component.

4.1. Concern identification guidelines

Table 1 presents our guidelines for identifying and

assigning concerns. As we mentioned earlier, concerns

come from a program’s logical specification. For the

first guideline in Table 1, objective means that two

people will identify the same set of concerns.

Definitive means the question, ―Is X currently a

concern of the program?‖ has a yes or no answer. This

ensures that the domain is well defined and reduces the

chance of inconsistency.

The minimal subset, minimal increment guidelines

proposed by Carver and Griswold [3], while more

systematic than most, do not satisfy this criteria

because they are not sufficiently objective and

Table 1. Concern identification and assignment guidelines.

Concern identification guidelines

CIG1. The concern domain should have objective and definitive membership criteria.

CIG2. The concern domain should be finite.

Concern assignment guidelines based on determining a component-code removal dependency

CAG1. Primitive components. Assign a concern to a primitive component if and only if the complete removal of the

concern requires with certainty the removal or modification of the component and its references. Complete removal of a

concern means no component remains assigned to it (i.e., disabling the concern is not enough).

CAG2. Container components. If all references to and components contained by a container component have the same

assignment, the container component automatically gets that assignment; otherwise, it is ―not assigned‖ (i.e., the outer source

code that encloses the contained components is not uniformly related to any concern.) Alternatively, an assignment to a

container component automatically propagates to its contained components. (This is similar to the rules in [18].)

CAG3. Declarations. If all references to a declaration have the same assignment, the declaration automatically gets that

assignment; otherwise, it is ―not assigned.‖ Alternatively, an assignment to a declaration automatically propagates to its

references. For example, calls to an assigned method, uses of an assigned variable, references to an assigned class, etc. are

automatically similarly assigned. (This agrees with [11] and [18].)

CAG4. Subclasses. If all subclasses of a base class have the same assignment, the base class automatically gets that

assignment; otherwise, it is ―not assigned.‖ Alternatively, an assignment to a base class propagates to its subclasses.

CAG5. Virtual methods. If all overrides of a virtual method have the same assignment, the virtual method automatically

gets that assignment; otherwise, it is ―not assigned.‖ Alternatively, a virtual method assignment propagates to its overrides.

definitive. An independent study found that adherence

to their guidelines resulted in inconsistencies [18].

The second guideline further limits the concerns

under consideration to be finite. For example, a

domain defined as ―all future concerns of the program‖

is not allowed.

4.2. Concern assignment guidelines

Our assignment guidelines in Table 1 are derived

from the goals of software pruning, viz. when

removing a concern we would like to remove as many

components related to the concern as possible from the

program to reduce the program’s resource

requirements and/or source base. Thus, assignment

consists of establishing that a component has a removal

dependency on the concern.

Previous assignment guidelines (for example, see

[9] and [18]) attempt to establish a contribution

relationship, i.e., a component contributes to the

implementation of a concern. In our experience,

contribution is hard to decide even when the assignor

knows the program well, because it forces the assignor

to consider any possible change to a component that

could potentially affect the concern directly or

indirectly. Consider some worst-case examples of a

―contribution‖:

 Removing the Main function causes all the

concerns of the program to not function properly.

(This required its own special case in the

identification guidelines in [18].);

 Speeding up some arbitrary piece of code

improves the performance of every concern;

 A change to System.String could potentially

affect every client and derived class.

While these are valid relationships, they are hard to

determine, potentially unbounded, and (we argue) not

that useful for understanding crosscutting.

In contrast, our guidelines are easier to follow

because a) concerns are well defined, b) the range of

potential changes that we must consider is limited to

―removing a concern,‖ and c) the range of potential

affects is limited to the impact on the component under

scrutiny. Of course, the assignor must understand the

concern and the behavior of the component well

enough to judge if a removal dependency exists.

The assignor is free to choose any level of

assignment granularity, although this will affect the

measurement precision. The guidelines ensure

consistency whether the assignment is performed at

statement, method, or class level, or higher.

5. Empirical study

To provide initial evidence as to the utility of our

metrics, we designed a case study to investigate the

following hypotheses:

H1. Our concern metrics are more descriptive than

previous concern metrics.

H2. Our concern metrics are more descriptive than

traditional OO metrics.

5.1. Case study setup

We chose to evaluate our hypotheses on a medium-

sized (13,534 SLOCs, 62 classes) C# program called

Goblin, which is a platform for developing virtual

reality applications.
1
 The rationale for choosing

Goblin was that one of the authors was one of the three

developers, making concern assignment easier and (we

expect) more accurate. To satisfy our identification

guidelines we chose the concerns to be the numbered

requirements (functional and nonfunctional) taken

from Goblin’s software requirement specification [12].

Of the 137 original requirements, we ignored those

that were obviously unrelated to the Goblin platform

(e.g., project web site, applications built using Goblin),

or which, according to one of the developers, were

never implemented. We also removed duplicates and

added a few implicit requirements:

 Exception/error detection – ―Checking the state of

a program against a certain predicate when its

control flow graph reaches a certain node, at

runtime.‖ [9]

 Exception/error handling – The handling of a

previously detected (by exception/error detection)

erroneous state.

 Clean shutdown – Frees up resources and does not

hang/crash on exit.

The final concern domain consisted of 39

requirements.

To test our first hypothesis, we compared degree of

scattering (DOS) with the concern diffusion over

components (CDC) metric created by Garcia et al. [9]

(see Table 2). The metrics are comparable because

they both measure properties of concerns at the class

level.

To test our second hypothesis, we compared degree

of focus (DOF) with the popular CK metric, coupling

between object classes (CBO) [5], which counts the

number of classes referenced by a class at compile

time. Both metrics measure class dependencies—on

classes for CBO, and on concerns for DOF—and are

thus comparable.

1
 The case study data (source code, concern mapping,

and requirements specification) is available at

http://www.cs.columbia.edu/~eaddy/goblin.

5.2. Results

We found that 95% of the requirements were

scattered across multiple classes and 100% across

multiple methods. This is consistent with [22], which

showed that every feature had no more than 8% of its

code in any file. The ―Help display‖ and ―Application

plug-ins‖ were the only requirements not crosscutting

at the class level (according to our definition) since

they were completely localized in one class (CDC is 1

and DOS is 0). Table 3 shows the concern metrics for

an interesting subset of the requirements concerns.

5.2.1. Comparing concern-based metrics. Looking

at the concern diffusion metrics for ―Exception/error

handling‖ we notice that exception handling is

scattered across 30 classes (CDC) and 107 methods

(CDO). Our metrics corroborate this by indicating a

relatively high degree of scattering (DOS) across

classes (0.80) and methods (0.97). This data reflects

the results of other studies [9, 16] that observed that

exception handling is highly scattered. We also

observed that exception handling incurred a high

number of ―concern switches‖ (CDLOC is 281, 88
th

percentile), which has not been reported elsewhere.

However, consider ―Monocle-display support‖ and

―Collision detection.‖ Despite the fact that they are

both scattered across the same number of classes (CDC

is 10), these concerns are actually not scattered

equally. The first clue is that Monocle-display has 5

times more source lines. Analyzing the dedication

(DEDI) values (not shown) reveal that the bulk (64%)

of the source code related to the Monocle-display

support requirement is contained in one class, while the

bulk of the Collision detection code is evenly split

between two classes (33% and 34%). Whereas CDC

fails to make this distinction, our DOS metric

indicates that Monocle-display support is less

scattered (DOS of 0.57) than Collision detection

(DOS of 0.76) at the class level. This evidence

supports our first hypothesis.

Our concern metrics are more descriptive because

they measure the extent of scattering, whereas the

concern diffusion metrics, and other concern metrics

(e.g., [23], [15], and [18]), only measure the presence

of scattering. Thus, common refactorings, such as

consolidating redundant code into a shared function,

would not be deemed beneficial by previous metrics.

This argument further supports our first hypothesis.

This increased level of precision requires a fine-

grained (i.e., statement-level) concern assignment. The

difficulty of obtaining such an assignment, especially

for large programs, may explain the lack of fine-

grained metrics. However, we believe this level of

detail is necessary to properly assess the nature and

extent of crosscutting for concerns such as

exception/error detection and handling and

performance.

5.2.2. Comparing concern metrics with traditional

OO metrics. Table 4 shows detailed class metrics for

a few classes. The CK metrics help us determine, for

example, that the Engine class is highly coupled (CBO

is 71, 99
th

 percentile). Because it depends on so many

classes, we may conclude that the Engine class is

complex and fault prone. In contrast, the very low

DOF metric (0.06) suggests a reason for the

complexity: the Engine class is distracted by too many

concerns. Analyzing both metrics helps us isolate the

components with the greatest need for refactoring.

Our concern metrics (DOS and DOF) are more

relevant than traditional OO metrics (like the CK

metrics) because they relate logical entities from the

problem domain (concerns) with physical entities

(components). In contrast, the CK metrics only

quantify relationships between physical entities

(components). Because a change to a program often

Table 2. Garcia and colleague’s concern diffusion metrics [9].

Concern Diffusion over Components

(CDC)

Counts the number of components that contribute to the implementation of a

concern and other components which access them.

Concern Diffusion over Operations (CDO) Counts the number of methods and advice which contribute to a concern’s

implementation plus the number of other methods and advice accessing them.

Concern Diffusion over LOC (CDLOC) Counts the number of transition points for each concern through the LOC.

Transition points are points in the code where there is a ―concern switch.‖

Table 3. Concern-based metrics. The metrics

include Garcia et al.’s metrics, CDC and CDO, and
our degree of scattering (DOS) metrics. Lower
values are better (less scattering).

Concern (Requirement) SLOC CDC CDO

Class

Level

Mthd

Level

Graphics API integration 3814 54 501 0.92 0.99

Monocle-display support 2192 10 272 0.57 0.97

Exception/error detection 513 33 133 0.89 0.98

Exception/error handling 455 30 107 0.80 0.97

Collision detection 424 10 43 0.76 0.95

Logging 271 9 26 0.57 0.66

Persistence 190 11 21 0.83 0.92

Clean shutdown 118 13 29 0.83 0.86

Help display 34 1 7 0.00 0.80

Application plug-ins 31 1 6 0.00 0.80

Diffusion

Metrics

Degree of

Scattering

originates as a change to some concern, our concern

metrics allow the impact of that change to be more

directly quantified.

6. Conclusion and future work

Before we can modularize concerns, we must be

able to locate and quantify them. We presented a

systematic methodology for manually identifying

concerns and their associated code fragments, which

we believe is more accurate and easier to apply

consistently than previous approaches. We introduced

a suite of metrics for quantifying the degree to which a

concern is scattered across components and separated

within a component. We showed how our metrics are

more descriptive than previous concern metrics and

traditional object-oriented metrics.

We plan to further explore the usefulness of our

metrics by determining if they actually help predict

change impact and other quality indicators. We would

like to know if a concern-code mapping helps

developers make changes in all the right places. We

would like to validate that our concern identification

and assignment methodology is consistent, repeatable,

and accurate. Ultimately, to realize the full benefits of

our metrics and mapping, we need a more practical

solution for concern identification and assignment.

7. References

[1] K. v. d. Berg, J. M. Conejero, and J. Hernández,

"Analysis of Crosscutting across Software Development

Phases based on Traceability," Wkshp. on Aspect-Oriented

Requirements Engineering and Architecture Design, 2006.

[2] T. J. Biggerstaff, B. G. Mitbander, and D. Webster,

"The concept assignment problem in program

understanding," Intl. Conf. on Software Engineering, 1993.

[3] L. Carver and W. G. Griswold, "Sorting out Concerns,"

Wkshp. on Multi-Dimensional Separation of Concerns, 1999.

[4] M. Ceccato, M. Marin, K. Mens, L. Moonen, P. Tonella,

and T. Tourwe, "Applying and Combining Three Different

Aspect Mining Techniques," Software Quality, 14(3):2006.

[5] S. Chidamber and C. Kemerer, "A Metrics Suite for

Object Oriented Design," IEEE Transactions on Software

Engineering, 476-493, 1994.

[6] T. Eisenbarth, R. Koschke, and D. Simon, "Locating

features in source code," IEEE Transactions on Software

Engineering, 29(210-224, March 2003.

[7] A. D. Eisenberg and K. De Volder, "Dynamic Feature

Traces: Finding Features in Unfamiliar Code," Intl. Conf. on

Software Maintenance, 2005.

[8] E. Figueiredo, A. Garcia, C. Sant'Anna, U. Kulesza, and

C. Lucena, "Assessing Aspect-Oriented Artifacts: Towards a

Tool-Supported Quantitative Method," Wkshp. on

Quantitative Approaches in OO Software Engineering, 2005.

[9] F. C. Filho, N. Cacho, E. Figueiredo, R. Maranhao, A.

Garcia, and C. M. F. Rubira, "Exceptions and Aspects: The

Devil is in the Details," Intl. Conf. on Foundations of

Software Engineering, 2006.

[10] R. E. Filman, T. Elrad, S. Clarke, and M. Aksit, Aspect-

Oriented Software Development. Boston, MA: Addison-

Wesley, 2005.

[11] A. Garcia, C. Sant'Anna, C. Chavez, S. Viviane, C.

Lucena, and A. v. Staa, "Agents and Objects: An Empirical

Study on Software Engineering," Technical Report 06-03, CS

Dept, PUC-Rio, 2003.

[12] IEEE, "IEEE recommended practice for software

requirements specifications," IEEE Std 830-1998, 1998.

[13] G. Kiczales, J. Irwin, J. Lamping, J.-M. Loingtier, C. V.

Lopes, C. Maeda, and A. Mendhekar, "Aspect-oriented

programming," ACM Computing Surveys, 28(4es):154, 1996.

[14] U. Kulesza, C. Sant'Anna, A. Garcia, R. Coelho, A. V.

Staa, and C. Lucena, "Quantifying the Effects of Aspect-

Oriented Programming: A Maintenance Study," Intl. Conf.

on Software Maintenance, 2006.

[15] A. Lai and G. C. Murphy, "The Structure of Features in

Java Code: An Exploratory Investigation," Wkshp. on Multi-

Dimensional Separation of Concerns, 1999.

[16] M. Lippert and C. V. Lopes, "A study on exception

detecton and handling using aspect-oriented programming,"

Intl. Conf. on Software Engineering, 2000.

[17] C. V. Lopes and S. Bajracharya, "An Analysis of

Modularity in Aspect-Oriented Design," Aspect-Oriented

Software Development, 2005.

[18] M. Revelle, T. Broadbent, and D. Coppit,

"Understanding Concerns in Software: Insights Gained from

Two Case Studies," Intl. Wkshp. on Program

Comprehension, 2005.

[19] M. P. Robillard and G. C. Murphy, "Automatically

Inferring Concern Code from Program Investigation

Activities," Automated Software Engineering, 2003.

[20] S. M. Sutton, Jr. and I. Rouvellou, "Concern Modeling

for Aspect-Oriented Software Development," in Aspect-

Oriented Software Development, R. E. Filman, T. Elrad, S.

Clarke, and M. Aksit, eds. Boston, MA: Addison-Wesley,

2005, pp. 479-505.

[21] S. L. Tsang, S. Clarke, and E. Baniassad, "An

Evaluation of Aspect-Oriented Programming for Java-based

Real-time Systems Development," Intl. Symp. on OO Real-

Time Distributed Computing, 2004.

[22] W. E. Wong, S. S. Gokhale, and J. R. Horgan,

"Quantifying the closeness between program components

and features," Journal of Systems and Software, 54(2):87-98,

2000.

[23] C. Zhang and H.-A. Jacobsen, "Quantifying Aspects in

Middleware Platforms," Aspect-Oriented Software

Development, 2003.

Table 4. Class-based metrics. The metrics

include the CK metric, CBO, and our degree of
focus metric, DOF. Lower values are better for
CBO but worse for DOF.

Class SLOC CBO DOF

Framework 1878 106 0.56

Engine 432 71 0.06

ArcBall 104 20 1.00

